

SECURE FILE TRANSFER

APPLICATION

Design Manual

Author: Aoife O’Brien

Student ID: C00214279

Project Supervisor: Patrick Tobin

Recipient: Institute of Technology Carlow

Date: Friday 29th November 2019

Secure File Transfer Application – Design Manual

Contents
Introduction ... 3

Front-end Layout .. 3

Screen-flow Screenshots ... 3

System Architecture .. 7

Database .. 9

Table Structure .. 9

Users Table ... 9

Sockets .. 12

Encryption and Decryption ... 12

References ... 14

Secure File Transfer Application – Design Manual

Introduction
This document will provide the reader with a thorough understanding of the work required to

create this application. It will equip the reader with the knowledge to design the application

described below, with a deep understanding of the internal architecture and user interface

layout. This document will be broken into five sections; front-end, database, system

architecture, sockets and encryption and decryption. The front-end section of the report will

cover the user interface design and layout along with the screen navigation of the application.

The database section will provide an overview of the complete database and its use in this

project. The main system architecture will also be detailed below. The socket section will

provide an explanation for how the Java socket pair will function to support client/server

communication, and the final section will describe the implementation of encryption and

decryption within the application to secure the files. The main functionality and the use cases

of this application have been defined in the previous documentation. The application will

allow users to efficiently and securely transfer files. It will be a Windows based application

and will consider ease-of-use to be a top priority.

Front-end Layout
The application follows a simple navigation system where the next relevant page can be

accessed from the current page. The style is used to allow users to use the application easily

and intuitively. The simple user interface remains consistent throughout the application and

allows users to access and send files quickly and efficiently.

Screen-flow Screenshots

1. Registration Page

Upon launching the application, users will see the registration page pictured below. Here,

users will enter the information required and will become registered with the application. If a

user is already registered, they can select the button at the bottom of the screen to go straight

to the login page. A reset button is also provided in case a user enters incorrect credentials by

mistake and wishes to start again. The reset button clears all the fields on the screen.

Secure File Transfer Application – Design Manual

Secure File Transfer Application – Design Manual

2. Login Page

The login page looks as below. Users will enter their username and password to login

to the application. A reset button is also provided in case a user enters incorrect

credentials by mistake and wishes to start again. The reset button clears all the fields

on the screen. Users can also click the link provided at the bottom of the screen to

reset their password if necessary.

Secure File Transfer Application – Design Manual

3. Home Page

Upon users successfully logging in to the application, the home page will be automatically

loaded, which will be where users send their files.

The choose file button will open a file chooser, allowing users to choose a file from their

device to send using the application.

Secure File Transfer Application – Design Manual

4. Logout Page

Users can logout of the application using the button provided. A pop up box will

appear on the screen asking the user to confirm or cancel the logout. If a user clicks

the yes option, they will be logged out successfully. If a user clicks no, they will

remain logged in to the application until the choose to logout.

System Architecture
The system is comprised of a MySQL database, a Java Database Connectivity (JDBC)

application programming interface (API), a Java user interface and a Java socket pair which

allows for client/server communication. An API is a set of operations that can be used by the

application to carry out its primary functions. The API contains functions that add, delete,

update and read from the database and return that information for use by the API. The user

interface uses the API by making calls and requests and receiving responses.

Secure File Transfer Application – Design Manual

MySQL Database

JDBC Back-end API

Java Language Front-end

 Socket Pair

Application Application

Secure File Transfer Application – Design Manual

Database
A database is an organised collection of data used by computer applications for the storage

and retrieval of information. In this application, a MySQL database will serve the purpose of

storing users’ information. This will be done by creating a table within the database and using

the information stored there to provide the functionality required by the application.

Table Structure

Users Table
The users table contains the information about all users registered with the application. Users

will be added to this table upon successful registration with the application. The table

contains columns; first name, last name, username, password, email, salt, sessionID,

loggedIn, public and private.

MySQL prepared statements are required for the following actions:

• Adding a new user to the table upon registration.

• Returning information about a specific user.

• Update user’s information.

Field Name Data Type Field Description

FIRSTNAME VARCHAR(30) Contains the first name of the user entered at

registration.

LASTNAME VARCHAR(30) Contains the last name of the user entered at

registration.

USERNAME VARCHAR(30) Contains the unique username of the user

entered at registration.

PASSWORD VARCHAR(300) Contains the salted and hashed version of the

plaintext password of the user entered at

registration.

EMAIL VARCHAR(30) Contains the email address of the user entered

at registration.

SALT VARCHAR(300) Contains the individual random salt used with

the users password.

SessionID VARCHAR(45) Contains a session ID for the user’s session,

and is generated upon a user logging in.

LoggedIn TINYINT Contains a variable which identifies if a user is

logged in or not, i.e. 1 for yes and 0 if not.

Public VARBINARY(4000) Contains the symmetrically encrypted RSA

public key of the user generated at registration.

Secure File Transfer Application – Design Manual

Private VARBINARY(4000) Contains the symmetrically encrypted RSA

private key of the user generated at

registration.

Adding a User (Registration Use Case):

PreparedStatement Pstatement=connection.prepareStatement("insert into users
values(?,?,?,?,?,?,?,?,?,?)");
Pstatement.setString(1,firstnameTextField.getText());
Pstatement.setString(2,lastnameTextField.getText());
Pstatement.setString(3,usernameTextField.getText());
Pstatement.setString(5,emailTextField.getText());
Pstatement.setNull(7,java.sql.Types.NULL);
Pstatement.setNull(8,java.sql.Types.NULL);
String password=passwordField.getText();
String confirmPassword=confirmPasswordField.getText();
if(password.equalsIgnoreCase(confirmPassword))
{

String salt = passwordFunction.getSalt(45);
String hashedPassword = passwordFunction.generateSecurePassword(password,
salt);
Pstatement.setString(6,salt);
Pstatement.setString(4,hashedPassword);
KeyPair keyPair = RSAEncryptionWithAES.genRSAKeys();
KeyFactory fact = KeyFactory.getInstance("RSA");
PublicKey publicKey = keyPair.getPublic();
String publicK = Base64.toBase64String(publicKey.getEncoded());
PrivateKey privateKey = keyPair.getPrivate();
String privateK = Base64.toBase64String(privateKey.getEncoded());
byte[] decodedKey = "*redacted*".getBytes();
SecretKey originalKey = new SecretKeySpec(decodedKey, 0, decodedKey.length,
"AES");
Cipher aesCipher = Cipher.getInstance("AES");
aesCipher.init(Cipher.ENCRYPT_MODE, originalKey);
byte[] CipherText = aesCipher.doFinal(publicK.getBytes());
publicK = Base64.toBase64String(CipherText);
byte[] input =privateK.getBytes();
byte[] CipherText2 = aesCipher.doFinal(input);
privateK = Base64.toBase64String(CipherText2);
Pstatement.setString(9, publicK);
Pstatement.setString(10, privateK);
Pstatement.executeUpdate();
JOptionPane.showMessageDialog(null,"Registration Successful");
frame.dispose();
LoginPage lp = new LoginPage();
lp.setTitle("Login");
}
else
{

JOptionPane.showMessageDialog(null,"Passwords do not match, please
try again");

}
} catch (Exception e1)
{

e1.printStackTrace();
}

}

Secure File Transfer Application – Design Manual

Return User Information (Login Use Case):

PreparedStatement st = (PreparedStatement) connection.prepareStatement("Select
SALT, PASSWORD from users where USERNAME=?");
PreparedStatement updateLoggedIn = (PreparedStatement)
connection.prepareStatement("Update users SET LoggedIn=true where USERNAME=?");
PreparedStatement generateSessionID = (PreparedStatement)
connection.prepareStatement("Update users SET SessionID=? where USERNAME=?");
st.setString(1, username);
updateLoggedIn.setString(1, username);
generateSessionID.setString(2, username);
ResultSet rs = st.executeQuery();
if (rs.next())
{

salt = rs.getString("SALT");
passwordt = rs.getString("PASSWORD");
String hashedPassword = passwordFunction.generateSecurePassword(password,
salt);
if (hashedPassword.equals(passwordt))
{

String suuid = passwordFunction.generateSessionID();
generateSessionID.setString(1, suuid);
generateSessionID.executeUpdate();
updateLoggedIn.executeUpdate();

}

frame.dispose();
UserHome uh = new UserHome();
uh.setTitle("Welcome");

}
else
{

JOptionPane.showMessageDialog(null, "Wrong Username & Password");
}
} else
{

JOptionPane.showMessageDialog(null, "Wrong Username & Password");
}
} catch (Exception sqlException)
{

sqlException.printStackTrace();
}

}

Update User Information (Logout Use Case):

PreparedStatement getSessionID = (PreparedStatement)
connection.prepareStatement("Select SessionID from users where USERNAME=?");
PreparedStatement updateLoggedIn = (PreparedStatement)
connection.prepareStatement("Update users SET LoggedIn=false where USERNAME=?");
PreparedStatement updateSessionID = (PreparedStatement)
connection.prepareStatement("Update users SET SessionID=null where USERNAME=?");
getSessionID.setString(1, username);
updateLoggedIn.setString(1, username);
updateSessionID.setString(1, username);
ResultSet rs = getSessionID.executeQuery();

Secure File Transfer Application – Design Manual

updateLoggedIn.executeUpdate();
updateSessionID.executeUpdate();
int a = JOptionPane.showConfirmDialog(null, "Are you sure?");
if (a == JOptionPane.YES_OPTION)
{

frame.dispose();
LoginPage frame = new LoginPage();
LoginPage.clearScreen();
JOptionPane.showMessageDialog(null, "You are now logged out. Please log in
to continue!");
}
else
{
}
} catch (SQLException sqlException)
{

sqlException.printStackTrace();
}

}

Sockets
“A socket is one end-point of a two-way communication link between two programs running

on the network. Socket classes are used to represent the connection between a client program

and a server program. TCP provides a reliable, point-to-point communication channel that

client-server applications on the Internet use to communicate with each other. To

communicate over TCP, a client program and a server program establish a connection to one

another. Each program binds a socket to its end of the connection. To communicate, the client

and the server each reads from and writes to the socket bound to the connection. (Oracle

2019).

A server socket and a client socket pair will be used to allow for communication and the

transfer of the files between users of the application, as pictured in the architecture diagram

above.

Encryption and Decryption
As stated in the functional specification for this application, a hybrid encryption approach

will be used to protect the data.

“Hybrid encryption is a mode that merges two or more encryption. It incorporates a

combination of asymmetric and symmetric encryption to benefit from the strengths of each

form of encryption. These strengths are respectively defined as speed and security.

Hybrid encryption is considered a highly secure type of encryption as long as the public and

private keys are fully secure” (Techopedia 2012).

Secure File Transfer Application – Design Manual

The below diagram portrays how hybrid encryption will be used in this application:

Firstly, the file will be encrypted using the symmetric encryption algorithm known as

AES (The Advanced Encryption Standard).

Next, the AES (symmetric) key will be encrypted using the RSA (asymmetric) private

key of the recipient.

On the other side, the recipients RSA (asymmetric) public key will be used to decrypt

the asymmetrically encrypted key.

The decrypted original AES key will then be used to decrypt the file itself.

(Created using SimpleDiagrams.com, 2020)

Secure File Transfer Application – Design Manual

References
Techopedia.com, 2012. Definition – What does Hybrid Encryption mean? [Online]

Available at: < https://www.techopedia.com/definition/1779/hybrid-encryption> [Accessed 20th

April 2020].

Oracle.com, 2019. Lesson: All about Sockets [Online] Available at:

<https://docs.oracle.com/javase/tutorial/networking/sockets/index.html> [Accessed 16th April

2020].

https://www.techopedia.com/definition/1779/hybrid-encryption
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html

